

Can we trust XAI? Current status and challenges of evaluating XAI methods

Christin Seifert University of Marburg, Hessian.Al

Jörg Schlötterer

Shreyasi Pathak

XAI@ECAI, 1.10.2023

Meike Nauta

Van Bach Nguyen

Jan Trienes

Le Phuong Qyiun

Please don't walk on the groundcover.

Sign on the well trimmed lawn at the University of Dallas, Texas. Walking across the lawn would be the shortest distance to coffee. It's 35° centigrade.

Q: Would you walk on the lawn?

X (AI)

Please don't walk on the groundcover. It's full of snakes.

Q: Would you walk on the lawn?

X (AI)

Q: Do you trust the explanation?

An explanation in AI is a presentation of (aspects of) the reasoning, functioning and/or behaviour of a machine learning model in human-understandable terms.

Nauta et. al, 2023

XAI Taxonomy

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, "A Survey of Methods for Explaining Black Box Models," ACM Comput. Surv., vol. 51, no. 5, pp. 1–42, 2018, doi: 10.1145/3236009. Meike Nauta, Jörg Schlötterer, Maurice van Keulen and Christin Seifert (2023). PIP-Net: Patch-Based Intuitive Prototypes for Interpretable Image Classification. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

2014-2020, AAAI, IJCAI, NeurIPS, ICML, ICLR, CVPR, ICCV, ACL, WWW, ICDM, SIGKDD, SIGIR

Evaluation of a System with Explanations

- If the output is bad, should we attribute this to the ML model or the XAI method?
- Notation: f(x) predictive model, g(f(x)) explanation method
- We need to be able to measure the quality of an explanation method

Evaluating ML Models

oring	Function
ssification	
curacy'	<pre>metrics.accuracy_score</pre>
lanced_accuracy'	<pre>metrics.balanced_accuracy_sc</pre>
o_k_accuracy'	<pre>metrics.top_k_accuracy_score</pre>
erage_precision'	<pre>metrics.average_precision_sc</pre>
g_brier_score'	<pre>metrics.brier_score_loss</pre>
	<pre>metrics.f1_score</pre>
_micro'	<pre>metrics.fl_score</pre>
_macro'	<pre>metrics.fl_score</pre>
_weighted'	<pre>metrics.fl_score</pre>
_samples'	<pre>metrics.f1_score</pre>
g_log_loss′	<pre>metrics.log_loss</pre>
ecision' etc.	<pre>metrics.precision_score</pre>
call' etc.	<pre>metrics.recall_score</pre>
card' etc.	<pre>metrics.jaccard_score</pre>
c_auc'	<pre>metrics.roc_auc_score</pre>
c_auc_ovr'	<pre>metrics.roc_auc_score</pre>
c_auc_ovo'	<pre>metrics.roc_auc_score</pre>
c_auc_ovr_weighted'	<pre>metrics.roc_auc_score</pre>
c_auc_ovo_weighted'	<pre>metrics.roc_auc_score</pre>

Evaluating Information Retrieval (IR) Methods

TREC Eval Paradigm

Image courtesy: Ravana, Sri Devi & Taheri, Masumeh & Rajagopal, Prabha. (2015). Document-based approach to in 10.1108/AJIM-12-2014-0171.

- map (float): Mean average precision.
- **gm_map** (float): geometric mean average precision.
- **bpref** (float): binary preference score.
- **Rprec** (float): precision@R, where R is number of relevant documents.
- recip_rank (float): reciprocal rank
- P@k (float): precision@k (k in [5, 10, 15, 20, 30, 100, 200, 500, 1000]).
- NDCG@k (float): nDCG@k (k in [5, 10, 15, 20, 30, 100, 200, 500, 1000]).

Evaluation of a System with Explanations

How to evaluate / compare?

Evaluating XAI

F. Doshi-Velez and B. Kim, "Towards A Rigorous Science of Interpretable Machine Learning." arXiv, Mar. 02, 2017. doi: 10.48550/arXiv.1702.08608.

How to evaluate / compare?

We didn't know...

Evaluating XAI

Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin Schmitt, Jörg Schlötterer, Maurice Explainable AI ACM Comput. Surv., Associaton for Computing Machinery, 2023

Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin Schmitt, Jörg Schlötterer, Maurice van Keulen and Christin SeifertFrom Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating

Evaluating XAI

A Living and Curated Collection of Explainable AI Methods

Interactively browse and contribute to a curated categorization of papers on explainable AI.

The initial dataset was collected and labelled by Nauta et al. (2022) as part of a large-scale literature review on the evaluation of Explainable Artificial Intelligence. This website provides an interactive way to explore the dataset, and we invite the community to extend the XAI dataset in order to make this a living and curated collection of explainable AI methods. Contribute by adding papers following our categorization scheme, and reviewing suggestions from others.

	<	State of Filte
∇	奋 Home	State of fine
Browse and Explore	≔ Papers	Type of Da
		Type of Tas
Quickly find relevant XAI papers by filtering and searching in the dataset, using our categorization scheme. Prefer visuals? Use	🗠 Charts	Venue
our charts page for interactive graphs.	Add Paper	+
Initial Collection and Ca		Ti
All papers in this collection are categorized along the sch al. (2022) and shown in the image on the right. The initia		+ Ex
IJCAI, NeurIPS, ICML, ICLR, CVPR, ICCV, ACL, WWW, ICDN		+ Se Do
		+ A
		+ LF
		+ Fe
	Overview of Methods on	+ In Kr
	Explainable Al	

Overview of Methods on Explainable AI

<

쉾 Home

⋮≡ Papers

🗠 Charts

Add Paper
Add Pape

ter 🛈 : AND OR 😡	Reset Filters			Shov Surv	w Origina ey	l Papers	s from	Show New Community	Papers f
Data	Type of Problem			Туре о	of Model t	to be Ex	plained		
ask	Type of Explanation			Metho	d used to	o explai	n		
	Start year → End	year	=	Search	titles, ve	nues, a	uthors ar	nd abstracts	(
								Export Filter	ed List as
Title	\$	Submitted 🕏	Venue	e 💠	Year	¢	Autho	or	
Explainable Recommendation via Interpretable Explainability.	e Feature Mapping and Evaluation of	Original	IJCAI		2020		Deng	Pan et al.	
Select, Answer and Explain - Interpretable Mul Documents.	lti-Hop Reading Comprehension over Multiple	Original	AAAI		2020		Ming	Tu et al.	
A Disentangling Invertible Interpretation Netw	ork for Explaining Latent Representations.	Original	CVPR		2020		Patric	k Esser et al.	
LP-Explain - Local Pictorial Explanation for Out	tliers.	Original	ICDM	I	2020		Наоуц	u Liu et al.	
Feature Interaction Interpretability - A Case fo Neural Interaction Detection.	r Explaining Ad-Recommendation Systems via	Original	ICLR		2020		Micha	el Tsang et al.	
Interpretations are Useful - Penalizing Explana Knowledge.	tions to Align Neural Networks with Prior	Original	ICML		2020		Laura	Rieger et al.	

call entry the second strategies of the testing of the second strategies of the second strategie

Co-12 Properties

Explanation / Model / User

Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin Schmitt, Jörg Schlötterer, Maurice van Keulen and Christin SeifertFrom Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI ACM Comput. Surv., Associaton for Computing Machinery, 2023

Co-12 Correctness

- **Randomization Check:** Randomly perturb the predictive model \rightarrow \bullet Explanation should change.
- Whitebox Check: Apply the explanation method to an interpretable \bullet whitebox. \rightarrow Explanation should match the whitebox' reasoning.
- **Single Deletion:** Delete or perturb single features. \rightarrow Observe model \bullet output and measure correlation with explanation's importance score.
- **Incremental Deletion / Addition:** Delete or add features in order of \bullet importance. \rightarrow see Single Deletion, and can compare with addition/ deletion in random order as baselines.

How faithful the explanation is w.r.t. the black box. "Nothing but the truth."

Co-12 Completeness

How much of the black box behaviour is described by the explanation? "The whole truth".

- **Preservation Check** Calculate the model's output for the explanation \bullet (instead of the full datapoint). \rightarrow Model output should be the same.
- **Deletion Check** Calculate output on the datapoint with relevant features \bullet removed. \rightarrow Model output should be different.
- **Fidelity** (for explanation methods that are themselves predictive models) \bullet Calculate agreement between the model output and explanation output for the same sample. \rightarrow Outputs should be similar. A decision tree trained as surrogate model for a neural network. Calculate accuracy of the decision tree w.r.t. to the model output (not the groundtruth.)

Co-12 Consistency

- Implementation Invariance Calculate agreement between model variants, e.g., hyperparameters or random initialization (but the same predictive performance). \rightarrow Explanations should not change (much).
- **Robustness to Model Changes** Change the model slightly. \rightarrow \bullet Explanations should not change (much).

Christopher Anders et al. "Fairwashing Explanations with Off-Manifold Detergent". In: Proceedings of the 37th International Conference on Machine Learning. PMLR, Nov. 2020, pp. 314–323.

How deterministic and implementation invariant is the explanation?

IntGrad LRP

LEFT: explanation of original model **RIGHT:** explanation of slightly changed model

Co-12 Continuity

How sensitive is the explanation to small input changes?

- Should not be an outlier.
- \bullet for two similar examples (input features and model output). \rightarrow Small changes in the input should not result in very different explanations.

Amirata Ghorbani, Abubakar Abid, and James Zou. "Interpretation of Neural Networks Is Fragile". In: Proceedings of the AAAI Conference on Artificial Intelligence 33.01 (July 2019), pp. 3681–3688.

Connectedness Measure similarity of counterfactuals to real samples. \rightarrow

Stability for Slight Variations Measure the difference between explanations

TOP: original sample **BOTTOM:** slightly perturbed sample

Co-12 Contrastivity

How discriminative is the explanation w.r.t. other events?

- **Target Discriminativeness** Train classifier on explanations for different targets. \rightarrow Should have high accuracy.
- **Data Randomization Check** Randomize \bullet labels in training data. Train a second model on this randomized data. Get explanations for a data samples for both models. \rightarrow Explanations should be different.
- **Target Sensitivity** Calculate explanation for different target labels. \rightarrow Should be different.

(b) Image

(c) Expl. Cat (d) Expl. Dog

Co-12 Compactness

Size of the explanation.

- lacksquareheight of a decision tree, number of pixels in an heatmap.
- \bullet relevant. E.g. amount of learned prototypes that are very similar and represents the same concept.
- lacksquaremuch is changed to explain a different outcome.

Original (positive): I liked this movie very much. Explanation 1 (negative): I did not like this movie.

Size Depends on explanation type. E.g. number of rules in a decision set,

Redundancy Not only the amount, but also the uniqueness of features is

Counterfactual Compactness For counterfactual explanations. Measure how

Explanation 2 (negative): This movie was one of the worst ideas ever!

Name, Description and Main Explanation Types

CONTINUIT

Stability for Slight Variations

Feature importance, Heatmap, Graph, Text, Localization, Dec Measure the similarity between explanations for two slightline in the input, for which the model response is nearly identical the explanation.

Fidelity for Slight Variations – Decision Rules, White-box Measure the agreement between interpretable predictions samples: an explanation for original input x should accurat slightly different sample x'.

Connectedness – *Prototypes, Representation Synthesis* Measure how connected a counterfactual explanation is to samples in the training data: ideally, the counterfactual is not an outlier, and there is a continuous path between a generated counterfactual and a training sample.

CONTRASTIVITY (Section 6.5)

Target Sensitivity – *Heatmap*

The explanation for a particular target or model output explanation for another target.

Target Discriminativeness – *Disentanglement, Repre* The explanation should be target-discriminative such target (e.g. class label) from the explanation, in either a

Data Randomization Check – *Feature importance, H* Randomly change labels in a copy of the training dataset and check that the explanations for this model on a ter for the model trained on the original training data.

	References
Y (Section 6.4)	
<i>cision Rules, White-box model</i> ly different samples. Small variations al, should not lead to large changes in	[8, 27, 31, 52, 60, 78, 78, 95, 136, 144, 145, 191–193, 198, 230, 240, 247, 257, 284]
<i>x model</i> is for original and slightly different tely predict the model's output for a	[136, 192]
mples in the training data: ideally the	[120, 140, 187]

ut (e.g. class) should be different from an	[176, 195, 232, 237, 261, 264]
esentation Synthesis, Text that another model can predict the right a supervised or unsupervised fashion.	[30, 71, 113, 129, 231, 256, 259, 271, 278]
<i>Heatmap, Localization</i> t, train a model on this randomized dataset est set are different from the explanations	[3, 145, 209]

Summary

- overview of general criteria.

Many metrics have been proposed, some only differ slightly. Co-12 gives an

• There is a tradeoff. E.g. smaller explanations are easier to understand but less correct (correctness vs. compactness). Explanations that are more coherent (do more align with user knowledge and expectations) are not necessarily correct.

Evaluation Toolkits

Toolkit	Usability	Stars	ML	Data Types	Expl. Type	Co-12 Coverage
XAI EVALUATION TOO	LKITS					
Ablation (2022) ^a	5-4-5	8	Ρ	G I <mark>S</mark> X T	FI HM LC PT DT	
CompareXAI (2022) ^b	4-2-3	7	S	G I S X T	FI HM LC PT DT	
ExPMRC (2022) ^c	0-1-4	57	n.a. ^d	G I S X T	FI HM LC PT DT	
GraphXAI (2022) ^e	4-2-4	57	Р	G I S X T	FI HM LC PT DT	
OpenXAI (2022) ^f	4-3-4	121	Р	G I <mark>S</mark> X T	FI HM LC PT DT	
Quantus (2022) ^g	5-4-5	271	PT	G I S X T	FI HM LC PT DT	
Safari (2022) ^h	2-0-2	2	Р	G I S X T	FI HM LC PT DT	
Eval XAI (2021) ⁱ	4-0-1	5	Р	G I S X T	FI HM LC PT DT	
PhE-Eval (2021) ^{<i>j</i>}	2-0-4	1	ST	G I S X T	FI HM LC PT DT	
XAI-Bench $(2021)^k$	2-2-4	32	S	G I S X T	FI HM LC PT DT	
XAI-Eval $(2021)^l$	0-0-1	2	Κ	G I S X T	FI HM LC PT DT	
BAM (2019) ^m	2-2-4	44	Т	G I S X T	FI HM LC PT DT	

Phuong Quynh Le, Meike Nauta, Van Bach Nguyen, Shreyasi Pathak, Jörg Schlötterer, Christin Seifert "Benchmarking eXplainable AI - A Survey on Available Toolkits and Open Challenges" Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence Survey Track. Pages 6665-6673

P - PyTorch / T - Tensorflow

Evaluation Datasets

Toolkit	Dataset	Description	Task	Size	B
	Squad	Span extraction from Wikipedia (English)	MRC	1003 (Q), 632 (P)	\checkmark
	CMRC	Span-extraction (Chinese)	MRC	1015 (Q), 768 (P)	\checkmark
	Race ⁺	Multiple-choice exams (English)	MRC	1125 (Q), 335 (P)	\checkmark
	C^3	Multiple-choice exams (Chinese)	MRC	1005 (Q), 517 (P)	\checkmark
	MUTAG	Nitroaromatic compounds, mutagenicity prediction	GC	1768 (G)	
	Benzene	Molecules, with our without benzene ring	GC	12000 (G)	
GraphXAI	Fluoride-carbonyl	Molecules, with or without fluoride and carbonyl	GC	8671 (G)	
	Alkanyl-carbonyl	Molecules, with or without alkane and carbonyl	GC	4326 (G)	
	SG-X	4 datasets of synthetic graphs with varying properties	NC	>13000 (N)	
BAM	Obj, Scene, Scene_only	3 datasets combining MSCOCO and MiniPlaces, labels are objects or scene labels	С	100 k (I)	
XAI-Bench	Synthetic	(Mixtures) of probability distributions	R/C	n.a. (S)	\checkmark
OpenXAI	Synthetic	20 continuous features from Gaussian distribution	С	5000 (S)	\checkmark

available, neither in the publication nor in the GitHub repository.

Table 2: XAI evaluation datasets with explanation ground truth available in the analysed toolkits. (B) indicates whether there is a benchmark available. Tasks: machine reading comprehension (MRC), graph-level classification (GC), node classification (NC), classification (C), regression (R). Size (Number of): questions (Q), passages (P), graphs (G), nodes (N), images (I), structured data (S). n.a. – information not

Benchmarks

Toolkit		XAI method
	IG	GradientShap
Original	1.21	1.56
Quantus	24780	25635
Captum	5735	7098
InterpretDL	2.36	3.19

Figure 2: Original image and explanations from Intergrated Gradients, GradientShap and Saliency methods (left to right).

Saliency

10.02 5356752 7423 13.81

Infidelity measure proposed in a paper as measured by different XAI evaluation libraries

It's even more complex...

XAI Result Presentation

XAI Method computation

ML model

	1	Feature	Т	Average	Attribution
Model Null	1				22.92
Crime per Capita		3.85		4.06	1.75
Residental Zoning %		0.00		13.23	-0.02
<pre>% Industrial Zoning</pre>		18.10	Т	10.40	0.02
House on the River?	1	1.00		0.09	0.57
Nitric Oxides PPM		0.77		0.54	0.20
# Rooms	1	6.39		6.26	-1.23
% Houses Older than 1940	1	91.00		62.66	-0.30
Distance to Employment Hubs	1	2.51		3.94	0.11
Highway Accessibility		24.00		8.74	0.05
Property Tax	1	666.00		393.96	-0.23
Pupil-Teacher Ratio		20.20		18.19	-0.57
<pre>% Lower Status</pre>		13.27		11.99	-1.19

Conclusion

- Evaluating XAI methods is **necessary**.
- There is **no one-fits-all** measure / metric.
- Evaluation is multifactorial, which factors depends on application.
- XAI evaluation toolkits are available, but do not report consistent results -> use eval toolkits **AND** report which toolkit was used.
- Some evaluation schemes measure both, evaluation metric calculation AND presentation (including human perception of colours etc.)

TODO: Unified evaluation paradigm.

Correctness Match between model and explanation.	Completeness How much of the model is explained?	$\frac{\text{Consistency}}{\text{Robustness to small}} \\ \text{changes in model and} \\ \text{implementation.} \\ \text{g(x)} = \text{g(x)} \\ \end{array}$	Continuity Robustness to small changes input. g(x) = g(x')
Contrastivity Discriminative to other events or targets? g(x Cat) != g(x Dog)	Covariate Complexity Complexity of features in the explanation	Compactness Size of the explanation	Composition Presentation format
Confidence Probability information available? p = ?	Context Useful for users?	Coherence Match with domain knowledge. g(x) = -	Controllability Can user influence explanation? g(x)

Explanation / Model / User

Christin.Seifert@uni-marburg.de

Please don't walk on the groundcover. It's full of snakes.

Just kidding, probably.

0

0

