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What is
Al/ML/DL?

Artificial Intelligence
(humanized systems able
to perform intelligent
tasks, e.g., autonomous
vehicle, CADe,x)

_~Machine Learning™>._
~ .
< (computer algorithms S
perform prediction tasks
without being explicitly
programmed, e.g., decision
trees, neural networks,
support vector machines,...)

Deep Learning

(data abstraction with
learning representation,
e.g., CNN)

>\,‘_ e
El Naga, BJR 125t Annv., 2020

Artificial

Intelligence

Originated in
the 1950s

Build machines
that think like
I ERS

-

Machine
Learning

~

Originated in
the 1960s

Computer
algorithms that

learn from data

™
Deep

Learning

Originated in
the 1970s

Based on neural
networks that
learn features




Deep vs conventional machine learning

Conventional “shallow” learning process

Input raw
data

Deep learning process

Input PET/CT image

Learning data Arepresentation

| Feature Features Detector/
M extractor Classifier
> Deep learning algorithm

Output labels

Learning task
(classification/detection)

Convolutional layers

Pooling layers

Fully connected layers

Zaidi and El Naga, Annu. Rev. Biomed. Eng., 2021

Machine and Deep
Learning in Oncology,
Medical Physics and
Radiology

Issam El Naga
Martin J. Murphy
Editors

@ Springer




National and Global Al/ML interest

National Al Initiative Act of 2020 (NAIIA)

Became law on January 1, 2021
As part of the “William M. (Mac) Thornberry National
Defense Authorization Act for Fiscal Year 20217,
H.R. 6395, Division E.

DIVISION E—NATIONAL ARTIFICIAL
INTELLIGENCE INITIATIVE ACT OF 2020

SEC. 5001. SHORT TITLE.

This division may be cited as the “National Artificial Intel-

ligence Initiative Act of 2020”.

Prioritize Al R&D
Grow and sustain U.S. research

Prioritize
leadership and capacity

Strengthen Al Research
Infrastructure
Enhance access to high Strengthen
quality data, models, and ~ [RGULEEEELC
computing resources Infrastructure

Advance Trustworthy Al
Modernize governance and technical Advance
standards for Al-powered technologies, Trustworthy
protecting privacy, civil rights, civil
liberties, and other democratic values

Microsoft

Moffitt Cancer Center

NASA

National Center for Atmospheric Research

National Center for Super ting Appli

Leverage Al for Government and
National Security
Apply Al to improve provision of
government services and national
security

Promote International

Al Engagement
Engage with like-minded allies
to promote a global Al
environment supportive of
democratic values

Train Al-Ready Workforce
Provide Al-ready education at
all levels: K-12, college, re-
training, re-skilling, R&D
workforce

at Urbana-Champaign

National Energy Technology Laboratory

https://www.ai.gov/wp-content/uploads/2023/01/NAIRR-TF-Final-Report-2023.pdf

at the University of lllinois

“ EUROPEAN COMMISSION

Brussels, 21.4.2021
COM(2021) 206 final
2021/0106(COD)

Proposal for a

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE (ARTIFICIAL
INTELLIGENCE ACT) AND AMENDING CERTAIN UNION LEGISLATIVE ACTS

AI/ML-Enabled Devices By Primary Medical Specialtyl

) Primary Number of Number of
=Rsdblogy Medical Devices in Devices with
= Cardiovascular Specialty Primary Oncology
= Hematology Medical Applications

Neurology Specialty
= Ophthalmic Radiology 241 157
o ; Cardiovascular 41 o
& Clinical Cigmintry Hematology 13 10
= General And Plastic Surgery Neurology 12 1
= Microbiology Ophthalmic 6 0
= Gastroenterology-Urology g:::::asluy 5 0
i
= Anesthesiology General And 5 3
= General Hospital Plastic Surgery
= Obstetrics And Gynecology Microbiology 5 0
Gastroenterology- | 4 3
= Pathology Urology
= Dental Anesthesiology 4 0
Orthopedic General Hospital | 3 0
Obstetrics And 1 0
Gynecology
Pathology 1 1
Dental 1 0
Orthopedic 1 0
Total: 343 Total: 175

Drabiak K., BJR, 2023
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Why Al/ML for Oncology?

The Lancet Commission on cancer
synergies to achieve solutions

The NEW ENGLAND JOURNAL of MEDICINE

REVIEW ARTICLE

FRONTIERS IN MEDICINE

Machine Learning in Medicine

Alvin Rajkomar, M.D., Jeffrey Dean, Ph.D., and Isaac Kohane, M.D., Ph.D.

This framing emphasizes that machine learning is not just a new tool, such as
a new drug or medical device. Rather, it is the fundamental technology required
to meaningfully process data that exceed the capacity of the human brain to com-
prehend; increasingly, this overwhelming store of information pertains to both
vast clinical databases and even the data generated regarding a single patient.”

Nearly 50 years ago, a Special Article in the Journal stated that computing would
be “augmenting and, in some cases, largely replacing the intellectual functions of
the physician.”® Yet, in early 2019, surprisingly little in health care is driven by
machine learning. Rather than report the myriad proof-of-concept models (of retro-
spective data) that have been tested, here we describe the core structural changes
and paradigm shifts in the health care system that are necessary to enable the full
promise of machine learning in medicine (see video).

Artificial intelligence in cancer research, diagnosis
and therapy

Progress in the Application of Machine Learning
Algorithms to Cancer Research and Care

Neal J. Meropol, MD’: Janet Donegan, BSN, MA': Alexander S. Rich, PhD'

health systems: harnessing
» Author Affiliations | Article Information

JAMA Netw Open. 2021;4(7):e2116063. doi:10.1001/jamanetworkopen.2021.16063
The application of artificial intelligence in medical care has lagged behind its use in finance, advertising, and oth-
er consumer industries. This contrast is associated, in part, with the high stakes involved in developing tools that
will ultimately affect patients. Given the expanding evidence gaps in oncology and the growing complexity of

Felicia Marie Knaul Patricia J Garcia « Mary Gospodarowicz « Beverley M Essue « Naomi Lee « Richard Horton

Published: August 19,2021 « DOI: hitps://dol.org/10.1016/50140-6736(21)01895-X « [ REREEr)

The data science revolution makes it affordable to develop’ medical decisions, the imperative to apply available technologies has never been greater. In this context, careful
digitalise, synthesise, analyse, store, and share vast quantities of consideration must be given to model development and scientific validation.>® Large-scale appropriate training
data and rig downstream with transparency to permit reproducibility, may provide researchers
the ability to use machine-based variables in appropriate clinical settings. In addition, explainability of model
inte"igence could improve health-care qua“ty and Efﬁdency inall ¢ may also be required if broad ad by nontechnical clinical users is expected. The true promise of

resource settings, aueviating workforce and equipment shortages, machine-based approaches is in enabling a learning health care system in which patient data are used for re-
search and clinical applications and evolving care patterns and outcomes measurements are incorporated in a

information that anchor machine learning. Additionally, artificial

and facilitating clinical decision support tools and remote technic:
6, 21

continuous feedback loop.” Success demands a broad recognition of the importance of high-quality data collec-

and quality assurance. tion, data standards, and the benefits of data sharing for patients and public health.

BJR 125TH ANNIVERSARY SPECIAL FEATURE: REVIEW ARTICLE

Artificial Intelligence: reshaping the practice of
radiological sciences in the 21st century
1ISSAM EL NAQA, pPhD, 2MASOOM A HAIDER, MD, *MARYELLEN L GIGER, PhD and 'RANDALL K TEN HAKEN, PhD
Perspective | Published: 17 May 2018
OPINION

Artificial intelligence in radiology

Ahmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H. Schwartz & Hugo J. W. L. Aerts |

Nature Reviews Cancer 18, 500-510 (2018) | Cite this article

ObdarSlemarto ) s Lesie ) Johan i 8 Georls Tounes Cell jrestinent @Celress  Non-invasive decision support for NSCLC treatment
s R Concet BT 08 G le —_ using PET/CT radiomics
Artificial intelligence and hi into bi dical e - "
d health care, whichimportantly " Precision medicine in 2030— Wei Mu, Lei Jiang, JianYuan Zhang, Yu Shi, Jhanelle E. Gray, like Tunali, Chao Gao, Yingying Sun, Jie
where the p arevast. These Includ and f seven ways to transform healthcare Tian, Xinming Zhao &, Xiin Sun £, Robert J. Gilies & & Matthew B. Schabath &
cancer, subtype classification, optimization of cancer treatment and identification of c A e R A
new p getsindrug y. While big data used to train machine YAl of Us Rasearch Program, Naticnal Institutes of Health, Bethesda, MD, USA Nature Communications 11, Article number: 5228 (2020) | Cite this article
National Institutes of Health, Bethesda, MD, USA
learning models may already exist, leveraging this opportunity to realize the full Present address: Bidg. 1 Room 228, 1 Centor Drive, Bethesda, MD 20814, USA
promise of artificial intelligence in both the cancer research space and the clinical 'm,m ‘{‘:‘_:_('L"';‘ ot . ] .
N — e s Viewpotntarice Personalized vaccines for cancer immunotherapy
ision health by for in genes, er Y
we asked four experts for their opinions on how we can begin to implement artificial and lifestyle. Pro ‘will & ¢ in the coming decade as it expands in .
intelligence whils T4 dsoas g key areas: huge cohorts, artificial intelligence (Al), routine clinical and = z
and the prognosis and of 1eh and todrive and returning value across diverse populations.

l discovery.




COVER STORY

MOFFITT

Moffitt Cancer Center: Why we are building the
( M’a C h ine Learning first mad?:e learning departmentin oncology

‘Department

CANCER CENTER

By Issam E] Naq

NANOMO MISSOURI{

To design, develop, and
translate state-of-the-
art patient-centered
machine and deep
learning algorithms

To transform personalized
cancer care and accelerate §
scientific discovery in |
cancer research with

{ machine/deep learning

VALUE VALUE VALUE
Patient-centered ML/DL for Unbiased, generalizable, Translate ML/DL findings
facilitating cancer care and and interpretable ML/DL into the clinic to improve
research from blended data cancer care and research

Moffitt.org/MachinelLearning ,(@ml4onco)



https://moffitt.org/research-science/divisions-and-departments/quantitative-science/machine-learning/?utm_source=refferal&utm_medium=general&utm_campaign=machinelearning&utm_content=research

Aleks Karolak, PhD
Molecular AI Lab
Research Focus: Molecular

Yoga Balagurunathan, PhD
Quantitative Imaging & AI Lab
Research Focus: Disease detection,

monitoring & prognosis interactions, drug discovery

Prostate Cancer: Clinical Pls: Drs. Pow-Sang & Gage, Industry. Koolis ®

.
Drs. Fred Locke, Chol, (Industry: Kite Pharma &)
a. Image aided disease detection

MRI Scan ‘!_

b. Disease monitoring & prognosis

Thanh Thieu, PhD
Language And Intelligence
Laboratory (LAILab)
Research Focus: NLP, language
models, functional mobility

t" Ghulam Rasool, PhD
. Robust Multimodal AI Lab
% » . Research Focus: Al uncertainty,

: ﬂ// multimodal data modeling
1IAV

$

Targroed Amack
(SN L o 4 g

& Mobility Entity Train Deep Neural Network | Gold Standard ‘
j Recognition Model Annotation
S
%“

Yi Luo, PhD
Fair AI Lab
Research Focus: Patient outcomes,

public health, social determinant

Cofounding Variables:
The confidence Physicians’ area of expertise,
of physicians in knowledge of Al/ML, working

status, licensed years, expected

N « applications, etc.
~
- -~ -~ \‘
- o mtined” Theuse of AUML
in cancer care
Cofounding Variables: delivery

Risk, ethics, healthcare policy, etc.
Outcome

Al/ML

Implementing a
data/algorithm/clinic
facilitator

—————— — of conf the / and
----------------- +  Direct effect of an intervention
Indirect effects of an interve through the medi

Issam El Naqa, PhD
Decision support & outcome
modeling

Research Focus: image analytics,
medical physics, human factors

System for
intervention in radiotherapy (ARCIDS)

[




Applications of ML/DL in Medical Physics and Radiation Oncolog{y

Patient Consultation

Planning Image Acqui-
sition (CT, MR, PET)

Target and Structure
Segmentation

Treatment Planning

Quality Assurance

Treatment Delivery

Follow-up

Scale:3.332

« Decision support tool Image processing « Auto-segmentation of Planning Patient-specific Motion manage- Data extraction
for radiation therapy « Metal artifacts organatriskand target - Dose prediction machine setup *ment/patient setup « Text
reduction volumes v . « Machine and +Object recognition/colli-  « Code
’ . On-line adaptive ) . ) .
« Synthetic (T from MRI « Auto-detection of target radiothera patient-specific QA are +sion avoidance « DICOM/DICOM RT
« Image quality volumes and anatomical Py . performed to ensure *Respiratory motion « Genomic
. « Auto-segmentation ; A Sr
improvements landmarks g accurate delivery of «prediction « Biologic
L Image registration . s
« Image registration S Altareanning planned treatment Auto detection/registra- Data modeling
CT/CT or CT/MR tion for landmarks/tu-
mor tracking
In-room imaging
(BCT/MVCT/MVimage
quality improvements
Auto-detection for
continuous cancer
progression monitoring
) ) ) ) ) )
U A\ A\ J A\ J

250 mmm ML in Radiation Oncology
mmm ML in Medical Physics
mmm DL in Radiation Oncology
B DL in Medical Physics
200
150
100 A
50

2014

2015 2016 2017

Year

2018 2019

Cui, Med Phys, 2020



®

Sample Applications in Radiotherapy

Imaging biomarkers Outcome modeling Adaptive RT

Initial Plan to Pre-Tx CT and PET Targets Adaptive Plan to Mid-Tx PET Target

nal data
o NN layer Flatten |

i B et ] e e — i+ et ongitudin
maging, dos
arys (by
i ¥
H N 2 L
v o' - = ongitudinal data ) — A Ji —
L - H - cytokines NN layer Flatten —> Merge layer Dense layers [—> LC prediction — ¢
praxni Fet03 - . /[ o
I 3 [ DY - =
Tranisa Ty microRNA+SNP | 5
pe——— [ ) 50 —
- W Bm oM 4 A oW WM i # 4 3 i 1" ¥ o 1 ! 7 1 i I o I 2 . — DaN
oW oWomoy obomoa 13 o33 1 S e I I e E SN . a5
i F > — = ~
Tt g y a o

59

Risk

Survival probabdity

e 3
B T 7 R i i B » e A Log-rank p= <1e-04
€ (d) - = ] s g,
£ i - & = * — low &
i o T T T T T 25
: 0 20 40 60 80 100 120 1
[] 20
o Time (woeks)
-~ RiskofLP(high): 29 26 24 21 19 16 15 15 13 13 1
00 02 04 06 08 1o RiskofLP(ow): 69 69 64 64 62 61 60 59 59 59 .
- o 5 0 ws ) » »

Wei, Physica Medica , 2021 Cui, IEEE TRMPS, 2018 Tseng, Med Phys, 2017
(Best of ASTRO) (Best paper in Medical Physics)



Radiomics deep survival model for liver cancdy

Strata = nsk=High == nsk=Low

1.00
T 2 0.75
r - _§
- 5
| 2 & om0
) = £
m
I3 :
b 2 nzs A
1 2
o}
I o
= 0.00
| P [ 1000 2000 3000 4000
] Time
= :
k= Number at risk
| o
= B risk-High| 83 14 4 0 0
| EAp— =
i nsk=Low| 84 17 3 1 0

Wei et al, Physica Medica, 2021
[




Deep Learning Prediction of post-SBRT Liver Function
Changes and NTCP Modeling in HCC based on DGAE-MRI

Pre k1 Post k1 Error map for CWGAN

D, 5 (b) 38.
5 51 k=0.62 (0.49,0.75) e k=0.59 (0.48,0.74)
LT
)6 1 BRI =E 1 r —
1 — )
)4 ¥ T
Ve s o
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{{ k=0.96 (0.74,1.22)
0 . . .
) 20 40 o0 80 100 ( X 40 60 80 00 20 40 60 80 00
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Error map for CWGAN & (f) <
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Wei et al, Med Phys, 2023




Multi-Objective radiogenomics model with generative ML @

A multi-objective Bayesian networks can be used to predict multiple radiation outcomes simultaneously, which provides
opportunities of finding appropriate treatment plans to solve the trade-off between competing risks.

: m§_191_56

\

Lung_gEUD and Pre-Treatment BN for joint |During-Treatment BN for joint
Tumor_gEUD prediction of LC and RP2 prediction of LC and RP2
Legend
0.63 0.8 0.85

Pre-treatment AU-FROC
Cytokines

During-treatment 95% CI 0.53-0.77 0.66-0.85 0.71-0.89
Cytokines

SNPs
microRNAs
Dosimetry

RD_GLSZM_LZLGE

Pre-treatment

FROC

Pet Information
During-treatment
Pet In form ation |
RD_GLSZM_ZSV % Positive e ey T T IR a2
Association

Negative
Association

Mixed

Association

Luo et al, Med Phys, 2018 (Editor’s Choice)




Multi-objective response model with deep survival neural networ@

20 times of 5-fold cross validations

(N,2) Volume
: D°f¢ C-index (95%Cl) RP2 LC
. ] NN-com 0.705 (0.676~0.734) 0.740 (0.715 ~0.765)
(N,2673) Pln ] 1 © DN NN-DVH 0.660 (0.630~0.690) 0.727 (0.700~0.753)
= ¥ N\ Surv- Lyman/log-logistic 0.613 (0.583~0.643) 0.569 (0.545~0.594)
(N,60)  Micro-RNA — + VAE_E 48— > > RP2
7 NET * Independent test on 25 newly treated patients
0] simcey ) B 2 RP2 prediction loss C-index (95%Cl) RP2 LC
: reduced NN-composite 0.692 0.721
representation |
VAE loses | for RP2 NN-DVH 0.684 0.706
[ \, \ Lyman/log-logistic 0.588 0.573
(N, 83) PET tumor » VAE 2>\
, yy, BN B -5 2
‘ . = ' NET A B
= i ——»  CNN - _a—F {7 4 © ©
(N2000) ’ : - = LC prediction loss s 7 S
‘ - o reduced o
Volume - 2 4 > 9 |
(N,2) representation :° z:°
Dose. forLC 2 2
» - ® 3
Pre-trained Architectures N: sample size
Architectures y: dimension of reduced presentation 8 - AUC 0.705 (95%Cl 0.676 ~0.734) y
s g ’ AUC 0.740 (95%C 0.715 ~ 0.765 )
. Intermediate layer o
‘— y = T T T I I I g _ T T T T T T
Inputs 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 08 1.0
pt ' Total loss=VAE losses +RP2 prediction loss + LC prediction loss 1-Specificity 1-Specificity
outputs

Cui et al, IJROBP, 2021



Initial Plan to Pre-Tx CT and PET Targets Adaptive Plan to Mid-Tx PET Target

Adaptive Radiation Oncology Decision Making with Deep Learning @

20170321CT UT P

« Dedision support tool ( ‘ T Commmer) |
for radiation therapy

50
e ® s = dinical
® e - = % 2 oA
= E @ x| xx x ®
45 & \ @ Co) e o i = A oan
: ® — . e ® i
2 ... I 850 S
@ ® o i ;
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> ]
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@
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>
O
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15
1.0
0 5 10 15 20 25 30 35
patient

I TseneMiedical'Phvsics. 2017 (Farrington Daniels Award) \



Software tools for Adaptive Radiotherapy Clinical —~
Decision Support (ARCIiDS) s -

Upload CSV File

ARCIiDS
(operation mode)
eward .
Input Artificial ' 104 (pg/mi] 110 pe/mi)
Patient Information Radiotherapy
Current Dose Plan Environment 0.8 015 (pgimi) 1910 (pg/mt)
z 0.2
3" MTV ] GLSIM LZLGE (UNTTS]
2
. Output £
DOp'tlt'nal Il\)/loie Treatment Outcome g 0 GLRLM 25V Tumor gLUO [Gy]
ceision-haker Optimal Dose
Lung ZEVD (Gy] Cxcrl Rs2234671
ARCIiDS ARCIDS
(training mode 1: Artificial RT Env) (training mode 2: Optimal Dose Decision-Maker) Treca R2IWAG06 Erecs Rs1047768
. Training DataSet . 0.4 0 0.8 1
Training DataSet Patient Ir%formation Trained LC Probability Week2 Tumor gEUD [Gy]  Weeka Lung gLUD [Gy]
Patient Information Artificial i
Retrospective Dose Plan Radiotherapy atient State Prediction Week 02 Dosex
Retrospective Treatment Outcome Patient Information Environment
+ range of dose
o Treatment i
Input Atificial Label
: outcomes for
Radiothera -
- Py Optimal Dose the range of dose
Environment Decision Maker

» User Factors in Al implementation

Niraula, Nature Sci Rep, 2023; Sun CMPB, 2022; patent pendi




Al/ML is nothing but perfect!

Google Flu Trends (GFT) (Ginsberg, 2009)

e GFT called out sick 2013 due to overestimation!

Predicting pneumonia risk (Caruana, 2015)

* Patients with pneumonia and asthma to be at a lower risk
of death from pneumonia than patients with pneumonia

but without asthmal!

Skin cancer risk prediction (Esteva, 2017)

* Presence of a ruler as a sign of high risk would skew
prediction

Lung disease prediction from xray (Rajpurkar, 2017)

* Presence of tube can indicate high risk

Covid-19 infection of Al (Deshpande, 2020; Roberts,
2021, El Naga, 2021)

. Unreliable Al models for Covid-19 prediction

=Data quality and context matters

COMPUTING

Racial Bias Found in a Major
Health Care Risk Algorithm

Black patients lose out on critical care when systems equate health needs with costs

By Starre Vartan on October 24, 2019

Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings

Amazon scraps secret Al recruiting tool that
showed bias against women

Study finds gender and skin-type bias in
commercial artificial-intelligence systems

Examination of facial-analysis software shows error rate of 0.8 percent for
light-skinned men, 34.7 percent for dark-skinned women.

External Validation of a Widely Implemented
Proprietary Sepsis Prediction Model in Hospitalized
Patients

Andrew Wong, MD'; Erkin Otles, MEng23; John P. Donnelly, PhD*; et al

EPIC's Sepsis Model Is Not Ready for Prime Time
Aaron J. Calderon, MD, FACP, SFHM, reviewing Wong A et al. JAMA Intern Med 2021 Aug

Despite its widespread use, the proprietary electronic health record system missed sepsis 67% of the time.



Issues in ML application in Oncology ®

Data modeling MEDICAL PHYSICS

o Ava | Ia bl | |ty a n d S h a rl n g The International Journal of Medical Physics Research and Practice
* Ethics and compliance

Special Issue Paper = (3 Free Access

Algo r|th m iC mode| | ng Machine learning and modeling: Data, validation,

communication challenges

® M Od e IS ’ Va I Id atl O n Issam El Nagqa 2, Dan Ruan, Gilmer Valdes, Andre Dekker, Todd McNutt, Yaorong Ge, Q. Jackie Wu,

Jung Hun Oh, Maria Thor, Wade Smith, Arvind Rao, Clifton Fuller, Ying Xiao, Frank Manion, Matthew

° M Od e IS ’ | nte rp reta bl | Ity Schipper, Charles Mayo, Jean M. Moran, Randall Ten Hakenuﬁiﬂ -

First published: 24 August 2018 | https://doi.org/10.1002/mp.12811



What training data sample size is required?

Error

Introduction to Machine and Deep Learning for Medical Physicists

Sunan Cui Huan-Hsin Tseng Julia PakelaEl Randall K. Ten Haken@ and Issam El Naqam
Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48103, USA

' Total error

Variance
Optimal Point

Bias

A

fadd more data will heélp

Error

®

trainin
validation

Model complexity

Training set size
Cui, Medical Physics, 2020



Ethical Challenge of Data Access ™

EE Q Sign in News Sport  Weather Shop Earth Travel =

NEWS Centralized Learning

Home Video World US&Canada UK Business Tech Science Stories En

Technology g

* General 1
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Data
Democratization!

i MIDRC

MEDICAL IMAGING AND DATA RESOURCE CENTER.

Lessons learned in transitioning to Al in the
medical imaging of COVID-19
Issam M. El Naqa, Hui Li, Jordan D. Fuhrman, Qiyuan Hu, Naveena Gorre, Weijie Chen, Maryellen L. Giger

J. of Medical Imaging, 8(S1), 010902 (2021). https://doi.org/10.1117/1.JMI.8.51.010902
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updates
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What evaluation plan for Al/ML?

Choice of Learning Algorithm(s)

= 7 M N\

1——» 2: knowledge of 1 is necessary for 2

» 2 : feedback from 1 should be used to adjust 2

Japkowicz and Shah, 2015

All All Data
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I
I |
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How to validate an ML/D
model?

Depending on the level of evidence

» Selection appropriate learning algorithms
* Validation and evaluation (TRIPOD criteria)

* Internally (cross-validation
schemes)

e Externally (independent datasets)

* Provide interpretation of machine learning prediction

Radiology:Artificial Intelligence

Minimum information about clinical artificial
intelligence modeling: the MI-CLAIM checklist

Beau Norgeot, Giorgio Quer, Brett K. Beaulieu-Jones, Ali Torkamani, Raquel Dias, Milena 3rs
-

Gianfrancesco, Rima Arnaout, Isaac S. Kohane, Suchi Saria, Eric Topol, Ziad Obermeyer, Bin Yu & Atul
J. Butte &

Nature Medicine 26.1320-1324(2020) | Cite this article

L Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD) Y

Only a single data set
is available: All data
are used to develop

the model

Type 1a: Development only

P
\»

Type 1b: Development and validation
using resampling

Only a single data set

is available: A portion

of the data are used to
develop the model

D % v
Only a single data set
is available: A separate

data set is available
for validation

Type 2a: Random split-sample
development and validation

Type 2b: Nonrandom split-sample
development and validation

b v Type 3: Development and validation
using separate data
v Type 4: Validation only

Type 2a

Type 2b

lical Im

Analysis s
Type Description
Type 1a  Development of a prediction model where predictive performance is then directly evaluated using exactly the same data (apparent performance).
Type 1b  Development of a prediction model using the entire data set, but then using pling (e.g., b pping or c hniques to
| the perf and op of the developed model. p techniq 8 lly referred to as “internal validation”, are
T ded as a prerequisite for prediction model di t, particularly if data are limited (6, 14, 15).

The data are randomly split into 2 groups: one to develop the prediction model, and one to evaluate its predictive performance. This design is
generally not recommended or better than type 1b, particularly in case of limited data, because it leads to lack of power during model development
and validation (14, 15, 16).

The data are nonrandomly split (e.g., by location or time) into 2 groups: one to develop the prediction model and one to evaluate its predictive
performance. Type 2b is a stronger design for evaluating model performance than type 2a, because allows for nonrandom variation between the

2 data sets (6, 13, 17).

Type3  Development of a prediction model using 1 data set and an of its perf on sep data (e.g., from a different study).
Type4  The evaluation of the predictive performance of an existing (published) prediction model on sep data (13).
Types 3 and 4 are commonly referred to as “external validation studies.” Arguably type 2b is as well, although it may be idered an i diary bety

internal and external validation.
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Al/ML in the real-world! == '

Progress in model validation
\_j evaluates model applicability
+ Feedback for model development

grreeesaen . < «o# caplures outliers not applicable to
s model

Letter | Published: 03 June 2021
Clinical integration of machine learning for curative- oo
intent radiation treatment of patients with prostate
cancer

Chris MclIntosh, Leigh Conroy, Michael C. Tjong, Tim Craig, Andrew Bayley, Charles Catton, Mary
Gospodarowicz, Joelle Helou, Naghmeh Isfahanian, Vickie Kong, Tony Lam, Srinivas Raman, Padraig
Warde, Peter Chung, Alejandro Berlin & & Thomas G. Purdie

Nature Medicine 27, 999-1005 (2021) ‘ Cite this article ML
versus

human

Journal of Clinical Oncology. > Listoflssues > Volume 38 Issue3l >

ORIGINAL REPORTS | Radiation Oncology

AduR cuepatient

System for High-Intensity Evaluation During Radiation "

Therapy (SHIELD-RT): A Prospective Randomized Study
of Machine Learning-Directed Clinical Evaluations

I—

g risk low riak
During Radiation and Chemoradiation - "
I ]
‘.) Check for updates R ‘".m.. MVMM”M 3:::

Julian €, Hong, MD, Ms'23 E3; Neville €, W, Eclov, PhD3; Nicole H, Dalal, MD% Samantha M,
Thomas, MS®€; Sarah ). Stephens, MD*; Mary Malickl, MSN, ACNP?; Stacey Shields, ANP-BC3;

Completed bedore weekly algorithe run (s « 16}

Alyssa Cobb, RN, BSN’; Yvonne M. Mowery, MD, PhD>£; Donna Niedzwiecki, PhD%%; Jessica D, 1> once weekly repersboss o
Tenenbaum, PhD%; and Manisha Palta, MD*¢ e 158 T
;g:{:artmenl of Radiation Oncology, University of California, San Francisco, San Francisco, CA IR s o News & Views | Published: 09 July 2021
Fran:irscctgtzxutauonal Health Sciences Institute, University of California, San Francisco, San -1 Sl n=2 RADIOTHERAPY
3 . . o o . .
St b i A S et S o, Ch e s Prospective clinical deployment of machine learning
in = 57 n =50

Spepartment of Biostatistics and Bioinformatics, Duke University, Durham, NC
£Duke Cancer Institute, Duke University, Durham, NC

inradiation oncology

Issam El Naqa

Nature Reviews Clinical Oncology (2021) | Cite this article



ML Accuracy versus interpretability

Proxy models :

Accuracy

High

Low

DL

DL-
HLV/SA/AM

i
|

DL
DHLR/LIME

Ideal
Approaches

HBN-EK

Low

High

Interpretability

Luo, BJR-O, 2019

(N,2673)

N,60)

(N,30)

(N, 83)

==

Radiomics Interpretability for Liver Cancer (Grad-CAM)

Wei et al, Physic‘a Medica, 2021

Pre-trained Architectures
Architectures

Multi-omics interpretability for Lung Cancer
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A review of explainable and interpretable Al with applications in
COVID-19 imaging

Jordan D. Fuhrman i24 Naveena Gorre, Qlyuan Hu, Hui Li, Issam El Naga, Maryellen L. Giger

First published: 18 November 2021 | https://doi.org/10.1002/mp.15359

Senior author: Maryellen L. Giger m-giger@uchicago.edu

Original Image Occlusion Map Guided Saliency Integrated
Backpropagation Gradients
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Intelligence augmentation (lA) instead of Al

Data-driven ML

Human in the loop!

e >

Figure 1. A “Fundamental Theorem” of informatics.

(C. Friedman)

Tighter Cls but similar predictions!

AN

Luo, Physica Medica (Editor Choice), 2021
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Can Quantum theory help develop more robust Al/ML algorithms?

Treatment Planning

®

il g SENCRRSO MY 00) s SA GRS DY Image-guided radiotherapy Quantum Predictive Model AUC
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Pakela et al, PMB, 2021
Clinical Decision support
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REVIEW ARTICLE

Al and machine learning ethics, law, diversity, and

global impact

'KATHERINE DRABIAK, JD, 'SKYLAR KYZER, 'VALERIE NEMOV, Bs and 2ISSAM EL NAQA, PhD

'Colleges of Public Health and Medicine, University of South Florida, Tampa, FL, USA
2Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA

Table 3. Recommendations for trustworthy and ethical Al/ML.

Recommendation

Sources

Ethical requirements (IRB/HIPAA) are monitored in data aggregation and
annotation

UK Data Protection Act 2018*>7
EU General Data Protection Act®73
HIPAA”®

Mittelstadt 2021%°

Transparency of training data characteristics, augmentation methods and
ensuring proper inclusion of underrepresented groups (across age gender and
race)

CLAIM, Consort-Al, CLAMP>®

Transparency of training data model developments (architecture, loss function,
optimization parameters)

CLAIM, Consort-Al, CLAMP®®

Multilevel evaluation process (internal and external)

TRIPOD/Equator network®”

Mitigation of explicit and implicit data leakage between training and testing

El Naqa et al, 2021°°

Evaluation of human factors in evaluating real-world implementation and
conduct prospective clinical trials if necessary

Luo et al. 2019%

Mahadevaiah et al. 20207

Char et al. 2020*!

UK Department of Health and Social Care*?

Continuous quality assurance and monitoring of deployed AI/ML models and
live data incorporation

US FDA guidance'® UK MHRA guidance®® IMDRF®

Al, artificial intelligence; ML, machine learning.




Quality assurance for Al/ML application in the clinic @

Acceptance Testing

* To ensure that the ML tool meets all applicable
safety and performance standards (prediction) and
that it meets contractual specifications

* Manufacturer includes an acceptance test
procedure with the ML tool

* Selection of evaluation endpoint and
definition of performance criteria (e.g., AUC);

* Selection of a benchmark data

Commissioning

* The process whereby the needed tool-specific
data/parameters are acquired and operational
procedures are defined

* May include:
* Training data collection
* Developing procedures
e User training before first use

Quality Assurance (QA)

» Effort to ensure treatments are given accurately,
safely and efficiently according to established tests
and evaluations

Continuing Quality Improvement (CQI)

» Effort that seeks to make treatments and
operations better by recognizing current
weaknesses in the program, anticipating problems
before they happen, streamlining tasks and
responding to changes in practice

El Naga, Moran, Ten Haken, The Modern Technology of Radiation Oncology, V4, Van Dyke

312 THE MODERN TECHNOLOGY OF RADIATION ONCOLOGY

Table 10.1

CHAPTER 10: MACHINE LEARNING IN RADIATION ONcoLogy 313

Contemporary QA considerations for the current state of machine learning
applications
TYPE OF QA CONSIDERATIONS FOR THE CURRENT STATE

MACHINE

—>

Table 10.1 (continued)
Contemporary QA considerations for the current state of machine learning
applications

LEARNING PERFORMED BY COMMISSIONING ROUTINE QA RISK BEING
APPLICATION REVIEWED BY MITIGATED
ML replacse Confirm function-  » Evaluate ML againat currsnt « Frequency: monthly * Confirm that
humantasks:  alty with sample  clinic standards (Kisin et al. * Monitor softwars ssttings for the analysisic

linear acceler-  QAdata (Rittsrst  2008) analysic performed
ator QA al. 2018) » Testlimits of analytics suchas = Repeat analysis of asubsstof  corrsctly to
by inserting emorz into delivery  the commissioning dataset avoid the
teatz or datasets for analysis, (e.g.. dynamic leaf gap) includ-  hazards of
.g..intentional leaf offsst pres-  ing ons at the fimit expsctation
sntin th reoult o+ recutaunless  bias
but missing in the delivery file the softwars has changed.
* Document situations whers the = If softwars has changed,
software passss and fails determine if a new bassine is
* Document situations whers nesdsd

results differ by 5% * Evaluats againat a subsst of
the manual analyzis for soft-
wars updats
* Review trands

ML supplemen-  + Confirm func-  » Evaluate bshavior againat « Repsat analysiz of a subsstof  » Monitor for
tal to human tionality with appropriate portiona of original  the commizsioning datazet any uninten-
taske: rsat- vendor-aup- TPS commissioning results (if (9.g.. dynamic leaf gap) includ-  tional shift in
ment planning plisd treatment  available) (Fraass st al. 1998) ing one at the limit clinical prac-

plane « Are clinical goals met? lathe = Monitor ksy dosimetric rasulte fice dus 1o
agrasment within 5% for key
matrics, such as mean does for
targets and max doss to @
volume (s.9.. 1 cc)?

« Evaluate ML tools for a rangs
of body sites and have site-
spacific rollout of techniquss for

from ML techniques using Big
Data Analytical tools whers
available by body site: 8.g. tar-
get coverage and maximum uation of plan
dose toa volume (s.g.. Toc)for  against MD-
OARs (Mayo st al., 2017) provided

* Add extra scrutiny on key met-  goals (plan-

ssttings inthe
ML algorithm
* Maintain eval-

* Dafins 2cops of
ML for planning

atlsast a limited number of rics for the first 5 patients per ning objsc-
body sites body site tives) (Evans
« Evaluate permissions of differ- stal. 2016;
snt uzer types for applying ML Marks st al.
techniqusz (s.g.. physicict ve. 2013)
dogimetriat)
« Have different usere perform
the same teat case—rasults
within 5%?
« Establish procsdursz for quality
control stape post-application
of ML, 5.5.. MD and physicist
review of final dogs diatribution
(continued next page)

TYPE OF QA CONSIDERATIONS FOR THE CURRENT STATE
MACHINE
LEARNING PERFORMED BY ~ COMMISSIONING ROUTINE QA RISK BEING
APPLICATION  REVIEWED BY MITIGATED
MUAI en- Confirm function-  » Define if ML tools will be « Repsat a subset of the « Risk being
hances human ality and under- forall issioning d mitigated ia
tacks: patient  standthe scope  patisnts or by bady sits + Gonfirm derivative structurse. an incorrect
workfiow, such  of what is * Create a commissioning data-  such as optimization structurss  expansion
as preparation  automated set which includes manual are consistent with those by from target or
for optimization preparation of the plan for humane (monthly) OAR vol-
optimization and automated = Gonfirm that quality control umes to crs-
preparation steps post-application remain ats optimi-

» Confirm reasonably concordant  in placs, such as review of the  zation struc-
rsauits betwssn human and final dose dictribution by MD. turss for dose
automated creation and physiciot coverags or

« Inepect the ovsriay of human sparing.
va. automated volumes to con- respectively
firm expansions are correct « Maintain eval-

« Verify volumes for optimization uation of plan
are within 5% or 2 ez (for optic againet MD
and other small structures) provided

goale (plan-
ningdirective)
(Evans etal.,
2016; Marka
stal 2013)

ML additive: «Evaluatewith  » Partner with physicians to « Confirm that the input and

dacision- vendor-cup- dstermine which divsacs typss  sxpected output ars conaistent

making (E1 piied dataset and staging are appropriate for  with the intsnt of the practice

Naga et al « Define size of the algorithm « Aszess the fraquency of patient

2018a) training and « Assess baseline variation in type to determine how often the

testing dataset clinical practics among physi-  training datasst should bs

ciang within a practics, within a
regiatry. or via publications
bafors implementation

« Assess sensitivity of the output

of algorithms with training sste
across the spsctrum of limited
variabiiity to significant
variability

« Is the algorithm supporting

implementation of a national
practics standard?

« I the algorithm bsing uzed to

apply new acience in a clinical
trial?

updated

* Monitor the rslationship

bstwsen dacisions with prior
practics using Big Data
Analytical tools whers available
by body site
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REVIEW ARTICLE
Translation of Al into oncology clinical practice

Issam El Naga(®'®, Aleksandra Karolak (', Yi Luo(®, Les Folio%, Ahmad A. Tarhini®, Dana Rollison® and Katia Parodi®

© The Author(s), under exclusive licence to Springer Nature Limited 2023

Table 1. Key requirements and their brief description for Al clinical implementation.

Requirement Description

Technical Hardware and software platforms to train and deploy Al/ML algorithms

Data modeling Input training data is key influencer of Al performance. Further annotated data is needed for validation and testing
retrospectively and possibly prospectively.

Regulations Use in cancer care requires regulatory approvals (e.g., 510(k) by the food and drug administration (FDA) in the USA).

Ethics Al is prone to bias and its implementation should be checked against societal ethical standards

Governance A legal framework needs to be developed to monitor and ensure continued safe Al implementation.



Take home Messages @

* Artificial intelligence/machine learning offers new opportunities to
develop better understanding of oncology and therapeutic response

 ML/DL algorithms vary in accuracy and interpretability levels and , ,
choice of proper algorithm(s) is an application and data dependent ‘
s

" ~

* Proper development and deployment of Al/ML involves following
guidelines (CLAMP) with possible prospective validation while

adhering to ethical Al standards to achieve trustworthiness - -
* Explainable Al (xAl) is key for trustworthiness & clinical translation . p
» To overcome current barriers in Al/ML for healthcare emerging \\\ - {‘
- -

methods include visualization for interpretability (Grad-CAM),
behavioral science (human-in-the loop), physics-based (quantum
computing) techniques

* Collaboration between stakeholders (data scientists, biologists,
physicists, economists, clinical practitioners, regulators & vendors)
will allow for safe and beneficial application of Al in biomedicine,
radiology and oncology
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