

Towards Trustworthy AI for Clinical Oncology

Issam El Naqa, PhD, DABR, FAAPM, FIEEE, FAIMBE

Chair of Machine Learning Department, Moffitt

Senior member of Radiation Oncology & GI Departments, Moffitt

Physics and Medical Engineering, University of South Florida (adjunct)

issam.elnaqa@moffitt.org

XAI^3 Workshop at ECAI 2023

October 1st, 2023, Krakow, Poland

National Institutes of Health Congressionally Directed Medical Research Programs CODINIE Department of Defense

Acknowledgements

B → REVIEW ARTICLE

Al and machine learning ethics, law, diversity, and global impact

Katherine Drabiak ~, Skylar Kyzer ~, Valerie Nemov ~ and Issam El Naqa ~

Published Online: 23 May 2023 · https://doi.org/10.1259/bjr.20220934

23 March 2021

Radiomic and radiogenomic modeling for radiotherapy: strategies, pitfalls, and challenges

James T. T. Coates, Giacomo Pirovano, Issam El Naga

Author Affiliations +

J. of Medical Imaging, 8(3), 031902 (2021). https://doi.org/10.1117/1.JMI.8.3.031902

Oncogene

Radiation Therapy Outcomes Models in the Era of Radiomics and Radiogenomics: Uncertainties and Validation

Issam El Naqa, PhD,* Gaurav Pandey, PhD,[†] Hugo Aerts, PhD,^{‡,§} Jen-Tzung Chien, PhD,^{||,¶} Christian Nicolaj Andreassen, MD, PhD,[#] Andrzej Niemierko, PhD,** and Randall K. Ten Haken, PhD*

www.nature.com/onc

Check for updates

Translation of AI into oncology clinical practice

Issam El Naqa¹^M, Aleksandra Karolak¹, Yi Luo¹, Les Folio², Ahmad A. Tarhini³, Dana Rollison⁴ and Katia Parodi⁵

© The Author(s), under exclusive licence to Springer Nature Limited 2023

Qvj

International Journal of Radiation Oncology biology • physics

Deep vs conventional machine learning

Machine and Deep

Zaidi and El Naga, Annu. Rev. Biomed. Eng., 2021

National and Global AI/ML interest

EUROPEAN COMMISSION

Brussels, 21.4.2021 COM(2021) 206 final 2021/0106(COD)

National AI Initiative Act of 2020 (NAIIA)

Became law on January 1, 2021

As part of the "William M. (Mac) Thornberry National Defense Authorization Act for Fiscal Year 2021", H.R. 6395, Division E. DIVISION E—NATIONAL ARTIFICIAL INTELLIGENCE INITIATIVE ACT OF 2020 SEC. 5001. SHORT TITLE. This division may be cited as the "National Artificial Intelligence Initiative Act of 2020".

National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign

National Energy Technology Laboratory

Proposal for a

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE (ARTIFICIAL INTELLIGENCE ACT) AND AMENDING CERTAIN UNION LEGISLATIVE ACTS

AI/ML-Enabled Devices By Primary Medical Specialty

Radiology Cardiovascular Hematology Neurology	Primary Medical Specialty	Number of Devices in Primary Medical Specialty	Number of Devices with Oncology Applications
Ophthalm ic	Radiology	241	157
Clinical Chemistry	Cardiovascular	41	Q
	Hematology	13	10
General And Plastic Surgery	Neurology	12	1
Microbiology	Ophthalmic	6	0
Gastroenterology-Urology	Clinical	5	0
Anesthesiology	General And	5	3
General Hospital	Plastic Surgery		
Obstetrics And Gynecology	Microbiology	5	0
Pathology	Gastroenterology- Urology	4	3
Dental	Anesthesiology	4	0
Orthopedic	General Hospital	3	0
	Obstetrics And Gynecology	1	0
	Pathology	1	1
	Dental	1	0
	Orthopedic	1	0
		Total: 343	Total: 175

https://www.ai.gov/wp-content/uploads/2023/01/NAIRR-TF-Final-Report-2023.pdf

Drabiak K., BJR, 2023

BJR 125TH ANNIVERSARY SPECIAL FEATURE: REVIEW ARTICLE Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century

Number of Publications 1992 1996 2013 2014 Year Radiology Radiation oncology

¹ISSAM EL NAQA, PhD, ²MASOOM A HAIDER, MD, ³MARYELLEN L GIGER, PhD and ¹RANDALL K TEN HAKEN, PhD

Why AI/ML for Oncology?

The NEW ENGLAND JOURNAL of MEDICINE

REVIEW ARTICLE

FRONTIERS IN MEDICINE

Machine Learning in Medicine

Alvin Rajkomar, M.D., Jeffrey Dean, Ph.D., and Isaac Kohane, M.D., Ph.D.

This framing emphasizes that machine learning is not just a new tool, such as a new drug or medical device. Rather, it is the fundamental technology required to meaningfully process data that exceed the capacity of the human brain to comprehend; increasingly, this overwhelming store of information pertains to both vast clinical databases and even the data generated regarding a single patient.⁷

Nearly 50 years ago, a Special Article in the Journal stated that computing would be "augmenting and, in some cases, largely replacing the intellectual functions of the physician."8 Yet, in early 2019, surprisingly little in health care is driven by machine learning. Rather than report the myriad proof-of-concept models (of retrospective data) that have been tested, here we describe the core structural changes and paradigm shifts in the health care system that are necessary to enable the full promise of machine learning in medicine (see video).

Artificial intelligence in cancer research, diagnosis and therapy

Olivier Elemento 🖂, Christina Leslie 🗠, Johan Lundin 🗠 & Georgia Tourassi 😂

Nature Reviews Cancer 21, 747-752 (2021) Cite this article

Artificial intelligence and machine learning techniques are breaking into biomedical research and health care, which importantly includes cancer research and oncology, where the potential applications are vast. These include detection and diagnosis of cancer, subtype classification, optimization of cancer treatment and identification of new therapeutic targets in drug discovery. While big data used to train machine learning models may already exist, leveraging this opportunity to realize the full promise of artificial intelligence in both the cancer research space and the clinical space will first require significant obstacles to be surmounted. In this Viewpoint article, we asked four experts for their opinions on how we can begin to implement artificial intelligence while ensuring standards are maintained so as transform cancer diagnosis and the prognosis and treatment of patients with cancer and to drive biological discovery.

The Lancet Commission on cancer and health systems: harnessing synergies to achieve solutions Felicia Marie Knaul 💷 + Patricia J Garcia + Mary Gospodarowicz + Beverley M Essue + Naomi Lee + Richard Hort

Published: August 19, 2021 - DOI: https://doi.org/10.1016/S0140-6736(21)01895-X - 🤼 Check for updates

The data science revolution makes it affordable to develop, digitalise, synthesise, analyse, store, and share vast quantities of information that anchor machine learning. Additionally, artificial resource settings, alleviating workforce and equipment shortages, machine-based approaches is in enabling a learning health care system in which patient data are used for reand facilitating clinical decision support tools and remote technica and quality assurance.6, 21

Cell Leading Edge Commentary

Precision medicine in 2030seven ways to transform healthcare

Joshua C, Denny^{1,3,*} and Francis S, Collins² ¹All of Us Research Program, National Institutes of Health, Bethesda, MD, USA ²National Institutes of Health, Bethesda, MD, USA ³Present address: Bidg. 1 Room 228, 1 Center Drive, Bethesda, MD 20814, USA 10.1016/j.cell.2021.01.015

dicine promises improved health by accounting for individual variability in get and lifestyle. Precision medicine will continue to transform healthcare in the coming decade as it expands in key areas: huge cohorts, artificial intellig nce (Al), routine clinical genomics, ph ics and env and returning value across diverse populations

Progress in the Application of Machine Learning Algorithms to Cancer Research and Care

Neal J. Meropol, MD¹; Janet Donegan, BSN, MA¹; Alexander S. Rich, PhD¹

» Author Affiliations | Article Information

JAMA Netw Open. 2021;4(7):e2116063. doi:10.1001/jamanetworkopen.2021.16063

he application of artificial intelligence in medical care has lagged behind its use in finance, advertising, and oth-

er consumer industries. This contrast is associated, in part, with the high stakes involved in developing tools that will ultimately affect patients. Given the expanding evidence gaps in oncology and the growing complexity of medical decisions, the imperative to apply available technologies has never been greater. In this context, careful consideration must be given to model development and scientific validation.^{5,6} Large-scale appropriate training data and rigorous downstream validation, with transparency to permit reproducibility, may provide researchers the ability to use machine-based variables in appropriate clinical settings. In addition, explainability of model intelligence could improve health-care quality and efficiency in all features may also be required if broad adoption by nontechnical clinical users is expected. The true promise of

> search and clinical applications and evolving care patterns and outcomes measurements are incorporated in a continuous feedback loop.⁷ Success demands a broad recognition of the importance of high-quality data collection, data standards, and the benefits of data sharing for patients and public health.

BJR 125TH ANNIVERSARY SPECIAL FEATURE: REVIEW ARTICLE

Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century

ISSAM EL NAQA, PhD, ²MASOOM A HAIDER, MD, ³MARYELLEN L GIGER, PhD and ¹RANDALL K TEN HAKEN, PhD Perspective | Published: 17 May 2018

OPINION

Artificial intelligence in radiology

Ahmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H. Schwartz & Hugo J. W. L. Aerts I

Nature Reviews Cancer 18, 500-510 (2018) Cite this article

Non-invasive decision support for NSCLC treatment using PET/CT radiomics

Wei Mu, Lei Jiang, JianYuan Zhang, Yu Shi, Jhanelle E. Gray, Ilke Tunali, Chao Gao, Yingying Sun, Jie Tian, Xinming Zhao , Xilin Sun , Robert J. Gillies & Matthew B. Schabath

Nature Communications 11, Article number: 5228 (2020) Cite this article

Personalized vaccines for cancer immunotherapy

UGUR SAHIN 📀 AND ÖZLEM TÜRECI

SCIENCE + 23 Mar 2018 + Vol 359, Issue 6382 + pp. 1355-1360 + DOI: 10.1126/science.aar7112

COVER STORY

Moffitt Cancer Center: Why we are building the first machine learning department in oncology

By Issam El Naqa and Dana Rollison

MISSION

To design, develop, and translate state-of-theart patient-centered machine and deep learning algorithms

To transform personalized cancer care and accelerate scientific discovery in cancer research with machine/deep learning

VALUE

Moffitt.org/MachineLearning

Patient-centered ML/DL for facilitating cancer care and research

VALUE Translate ML/DL findings

into the clinic to improve cancer care and research

oga Balagurunathan, PhD uantitative Imaging & AI La esearch Focus: Disease detection

Prostate Cancer: Clinical PIs: Drs. Pow-Sang & Gage, Industry: Koelis ®

Al-augmented molecular simulations

Aleks Karolak, PhD **Molecular AI Lab** Research Focus: Molecu ctions, drug discovery

Al-augmented docking

STABLE PROTEIN COMPLEX

Al-augmented search for interactor

-

Luo, PhD **Fair AI Lab** tesearch Focus: Patient outcomes

Issam El Naqa, PhD

ecision support & outcome

ulam Rasool, PhD obust Multimodal AI . Focus: AI uncertainty iltimodal data modeling

Thanh Thieu, PhD Language And Intelligence Laboratory (LAILab) rch Focus: NLP, langu els, functional mobility

Recommend	er System for adaptive		No-code Multi-insti Platform for Interpr
		Data	(MAICARE) Platform/Covid Images
-		GE	N3 Isper
	199	1	and day your

A LAAT ILAA

Applications of ML/DL in Medical Physics and Radiation Oncolog

Sample Applications in Radiotherapy

(Best of ASTRO)

(Best paper in Medical Physics)

Radiomics deep survival model for liver cance

Wei et al, Physica Medica, 2021

Deep Learning Prediction of post-SBRT Liver Function Changes and NTCP Modeling in HCC based on DGAE-MRI

Wei et al, Med Phys, 2023

Multi-Objective radiogenomics model with generative ML

A multi-objective Bayesian networks can be used to predict multiple radiation outcomes simultaneously, which provides opportunities of finding appropriate treatment plans to solve the trade-off between competing risks.

Multi-objective response model with deep survival neural network

20 times of 5-fold cross validations			
C-index (95%CI)	RP2	LC	
NN-com	0.705 (0.676~0.734)	0.740 (0.715 ~0.765)	
NN-DVH	0.660 (0.630~0.690)	0.727 (0.700~0.753)	
Lyman/log-logistic	0.613 (0.583~0.643)	0.569 (0.545~0.594)	
Independent test on 25 newly treated patients			
C-index (95%CI) RP2 LC		LC	
NN-composite	0.692	0.721	
NN-DVH	0.684	0.706	
Lyman/log-logistic	0.588	0.573	

0.4

0.6

1-Specificity

0.8

1.0

Cui et al, IJROBP, 2021

Adaptive Radiation Oncology Decision Making with Deep Learning

Software tools for Adaptive Radiotherapy Clinical

User Factors in AI implementation

Niraula, Nature Sci Rep, 2023; Sun CMPB, 2022; patent pendin

AI/ML is nothing but perfect!

- Google Flu Trends (GFT) (Ginsberg, 2009)
 - GFT called out sick 2013 due to overestimation!
- Predicting pneumonia risk (Caruana, 2015)
 - Patients with pneumonia and asthma to be at a lower risk of death from pneumonia than patients with pneumonia but without asthma!
- Skin cancer risk prediction (Esteva, 2017)
 - Presence of a ruler as a sign of high risk would skew prediction
- Lung disease prediction from xray (Rajpurkar, 2017)
 - Presence of tube can indicate high risk
- Covid-19 infection of AI (Deshpande, 2020; Roberts, 2021, El Naqa, 2021)
 - Unreliable AI models for Covid-19 prediction

\Rightarrow Data quality and context matters

Racial Bias Found in a Major Health Care Risk Algorithm

COMPUTING

Black patients lose out on critical care when systems equate health needs with costs

By Starre Vartan on October 24, 2019

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Amazon scraps secret AI recruiting tool that showed bias against women

Study finds gender and skin-type bias in commercial artificial-intelligence systems

Examination of facial-analysis software shows error rate of 0.8 percent for light-skinned men, 34.7 percent for dark-skinned women.

External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients

Andrew Wong, MD¹; Erkin Otles, MEng^{2,3}; John P. Donnelly, PhD⁴; et al

EPIC's Sepsis Model Is Not Ready for Prime Time

Aaron J. Calderon, MD, FACP, SFHM, reviewing Wong A et al. JAMA Intern Med 2021 Aug

Despite its widespread use, the proprietary electronic health record system missed sepsis 67% of the time.

Issues in ML application in Oncology

Data modeling

- Availability and sharing
- Ethics and compliance
- Algorithmic modeling
 - Models' validation
 - Models' interpretability

MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice

Special Issue Paper 🔂 Free Access

Machine learning and modeling: Data, validation, communication challenges

Issam El Naqa 🕿, Dan Ruan, Gilmer Valdes, Andre Dekker, Todd McNutt, Yaorong Ge, Q. Jackie Wu, Jung Hun Oh, Maria Thor, Wade Smith, Arvind Rao, Clifton Fuller, Ying Xiao, Frank Manion, Matthew Schipper, Charles Mayo, Jean M. Moran, Randall Ten Haken

First published: 24 August 2018 | https://doi.org/10.1002/mp.12811

What training data sample size is required?

Introduction to Machine and Deep Learning for Medical Physicists

Sunan Cui, Huan-Hsin Tseng, Julia Pakela, Randall K. Ten Haken, and Issam El Naqa Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48103, USA

Ethical Challenge of Data Access

The company, <u>Paige.AI</u>, is one in a burgeoning field of start-ups that are applying artificial intelligence to health care, yet it has an advantage over many competitors: The company <u>has an exclusive deal to use the cancer</u> <u>center's vast archive</u> of 25 million patient tissue slides, along with decades of work by its world-renowned pathologists.

Jochems, IJROBP, 2017

Data Democratization!

MEDICAL IMAGING AND DATA RESOURCE CENTER.

Lessons learned in transitioning to AI in the medical imaging of COVID-19

Issam M. El Naga, Hui Li, Jordan D. Fuhrman, Qiyuan Hu, Naveena Gorre, Weijie Chen, Maryellen L. Giger Author Affiliations +

J. of Medical Imaging, 8(S1), 010902 (2021). https://doi.org/10.1117/1.JMI.8.S1.010902

MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice

Collage of illustrations from papers from the Special Issue on Datasets hosted in The Cancer Imaging Archive (TCIA). Thanks to Jeff Tobler, University of Arkansas, for creating this collage.

> Medical Physics is an official journal of the AAPM, he International Organization for Medical Physics (IOMP), and the Canadian Organization of Medical Physicists (COMP).

WILEY

Machine and Federated Learning Infrastructure (API)

What evaluation plan for AI/ML?

How to validate an ML/DL model?

Depending on the level of evidence

- Selection appropriate learning algorithms
- Validation and evaluation (TRIPOD criteria)
 - <u>Internally</u> (cross-validation schemes)
 - Externally (independent datasets)
- Provide interpretation of machine learning prediction

Radiology: Artificial Intelligence

Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist

Beau Norgeot, Giorgio Quer, Brett K. Beaulieu-Jones, Ali Torkamani, Raquel Dias, Milena Gianfrancesco, Rima Arnaout, Isaac S. Kohane, Suchi Saria, Eric Topol, Ziad Obermeyer, Bin Yu & Atul J. Butte ⊠

Nature Medicine 26. 1320-1324(2020) Cite this article

Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD)

Analysis Type Description

lical Im

ers

- Type 1a Development of a prediction model where predictive performance is then directly evaluated using exactly the same data (apparent performance).
- Type 1b Development of a prediction model using the entire data set, but then using resampling (e.g., bootstrapping or cross-validation) techniques to evaluate the performance and optimism of the developed model. Resampling techniques, generally referred to as "internal validation", are recommended as a prerequisite for prediction model development, particularly if data are limited (6, 14, 15).
- Type 2a The data are randomly split into 2 groups: one to develop the prediction model, and one to evaluate its predictive performance. This design is generally not recommended or better than type 1b, particularly in case of limited data, because it leads to lack of power during model development and validation (14, 15, 16).
- Type 2b The data are nonrandomly split (e.g., by location or time) into 2 groups: one to develop the prediction model and one to evaluate its predictive performance. Type 2b is a stronger design for evaluating model performance than type 2a, because allows for nonrandom variation between the 2 data sets (6, 13, 17).
- Type 3 Development of a prediction model using 1 data set and an evaluation of its performance on separate data (e.g., from a different study).
- Type 4 The evaluation of the predictive performance of an existing (published) prediction model on separate data (13).
- Types 3 and 4 are commonly referred to as "external validation studies." Arguably type 2b is as well, although it may be considered an intermediary between internal and external validation.

Che Mec	Novelty	Please briefly (150 words or less) describe the novelty and/or significance of your study.: N/A If there is anything you wish to tell the editor that is not covered in this submission questionnaire, please enter it here: N/A
 Purp algoi Data size, tunir ML n O ai Pi (i Signi Ir 	Artificial Intelligence and Machine Learning	Is this article on the topic of artificial intelligence or machine learning?: Yes The number of training, validation, and test sets are described in the Abstract. The number of input data and output results, along with the type of data (e.g. MRI images, CT images, etc.) are mentioned in the Abstract.: No The stage of development is described in the manuscript Introduction.: Yes The data, its source, and data composition are described in detail in the Materials section.: No The details of the machine learning algorithm, including pre-processing and training method, are provided in the Methods section. All major results are accompanied by appropriate tests of statistical significance.: No The innovation, significance, and/or contributions to the field of medical physics are discussed in the Discussion section.: Yes
• []	Author ORCID Status	0 of 1 ORCIDs available.
	NIH Funding	No funding has been received from NIH
	CrossCheck Manuscript	Never Processed / Send File

Issam El Naqa¹ John M. Boone² Stanley H. Benedict³ Mitchell M. Goodsitt⁴ Heang-Ping Chan⁴ Karen Drukker⁵ Lubomir Hadjilski⁴ Dan Ruan⁶ Berkman Sahiner⁷

Manuscript Items

AI/ML in the real-world!

Letter | Published: 03 June 2021

Clinical integration of machine learning for curativeintent radiation treatment of patients with prostate cancer

Chris McIntosh, Leigh Conroy, Michael C. Tjong, Tim Craig, Andrew Bayley, Charles Catton, Mary Gospodarowicz, Joelle Helou, Naghmeh Isfahanian, Vickie Kong, Tony Lam, Srinivas Raman, Padraig Warde, Peter Chung, Alejandro Berlin ⊠ & Thomas G. Purdie ⊠

Nature Medicine 27, 999–1005 (2021) Cite this article

Journal of Clinical Oncology > List of Issues > Volume 38, Issue 31, >

ORIGINAL REPORTS | Radiation Oncology

System for High-Intensity Evaluation During Radiation Therapy (SHIELD-RT): A Prospective Randomized Study of Machine Learning–Directed Clinical Evaluations During Radiation and Chemoradiation

Check for updates

Julian C, Hong, MD, MS^{1,2,3} ^[23]; <u>Neville C, W. Eclov</u>, PhD³; <u>Nicole H. Dalal</u>, MD⁴; <u>Samantha M</u>, <u>Thomas</u>, MS^{5,6}; <u>Sarrah J. Stephens</u>, MD³; <u>Mary Malicki</u>, MSN, ACNP³; <u>Stacey Shields</u>, ANP-8C³; <u>Alyssa Cobb</u>, RN, BSN³; <u>Yvonne M. Mowery</u>, MD, PhD^{3,6}; <u>Donna Niedzwiecki</u>, PhD^{5,6}; <u>Jessica D</u>, <u>Tenenbaum</u>, PhD⁵; and <u>Manisha Palta</u>, MD^{3,6}

¹Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA ²Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA

³Department of Radiation Oncology, Duke University, Durham, NC ⁴Department of Medicine, University of California, San Francisco, San Francisco, CA ⁵Department of Biostatistics and Bioinformatics, Duke University, Durham, NC ⁶Duke Cancer Institute, Duke University, Durham, NC

News & Views | Published: 09 July 2021

RADIOTHERAPY

Prospective clinical deployment of machine learning in radiation oncology

Issam El Naqa 🖂

Nature Reviews Clinical Oncology (2021) Cite this article

ML Accuracy versus interpretability

A review of explainable and interpretable AI with applications in COVID-19 imaging

Jordan D. Fuhrman 🔀 Naveena Gorre, Qiyuan Hu, Hui Li, Issam El Naqa, Maryellen L. Giger

First published: 18 November 2021 | https://doi.org/10.1002/mp.15359

Senior author: Maryellen L. Giger m-giger@uchicago.edu

Intelligence augmentation (IA) instead of AI

Figure 1. A "Fundamental Theorem" of informatics. (C. Friedman)

Tighter CIs but similar predictions!

Luo, Physica Medica (Editor Choice), 2021

Human-in-the loop: Predicting Local Control in Liver Cancer

Can Quantum theory help develop more robust AI/ML algorithms?

Pakela, Med Phys, 2020, (Editor's Choice)

 526.2 ± 126.1

Sinusoid

QTA

REVIEW ARTICLE

Al and machine learning ethics, law, diversity, and global impact

¹KATHERINE DRABIAK, JD, ¹SKYLAR KYZER, ¹VALERIE NEMOV, BS and ²ISSAM EL NAQA, PhD

¹Colleges of Public Health and Medicine, University of South Florida, Tampa, FL, USA ²Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA

Table 3. Recommendations for trustworthy and ethical AI/ML.

Recommendation	Sources
Ethical requirements (IRB/HIPAA) are monitored in data aggregation and annotation	UK Data Protection Act 2018 ^{43,73} EU General Data Protection Act ^{43,73} HIPAA ⁷⁸ Mittelstadt 2021 ²⁵
Transparency of training data characteristics, augmentation methods and ensuring proper inclusion of underrepresented groups (across age gender and race)	CLAIM, Consort-AI, CLAMP ⁵⁰
Transparency of training data model developments (architecture, loss function, optimization parameters)	CLAIM, Consort-AI, CLAMP ⁵⁰
Multilevel evaluation process (internal and external)	TRIPOD/Equator network ⁴⁷
Mitigation of explicit and implicit data leakage between training and testing	El Naqa et al, 2021 ⁵⁰
Evaluation of human factors in evaluating real-world implementation and conduct prospective clinical trials if necessary	Luo et al. 2019 ²² Mahadevaiah et al. 2020 ³⁷ Char et al. 2020 ⁴¹ UK Department of Health and Social Care ⁴³
Continuous quality assurance and monitoring of deployed AI/ML models and live data incorporation	US FDA guidance ¹⁵ UK MHRA guidance ⁶⁶ IMDRF ⁶⁹
AI, artificial intelligence; ML, machine learning.	·

Quality assurance for AI/ML application in the clinic @

Acceptance Testing

- To ensure that the ML tool meets all applicable safety and performance standards (prediction) and that it meets contractual specifications
- Manufacturer includes an acceptance test procedure with the ML tool
 - Selection of evaluation endpoint and definition of performance criteria (e.g., AUC);
 - Selection of a benchmark data

Commissioning

- The process whereby the needed tool-specific data/parameters are acquired and operational procedures are defined
- May include:
 - Training data collection
 - Developing procedures
 - User training before first use

Quality Assurance (QA)

 Effort to ensure treatments are given accurately, safely and efficiently according to established tests and evaluations

Continuing Quality Improvement (CQI)

• Effort that seeks to make treatments and operations better by recognizing current weaknesses in the program, anticipating problems before they happen, streamlining tasks and responding to changes in practice

		ble 10.1 ntemporary QA consideration plications	ns for the current state of ma	chine learn <mark>in</mark> g	
TYPE OF MACHINE LEARNING APPLICATION	QA CONSIDERATIONS FOR THE CURRENT STATE				
	PERFORMED BY	COMMISSIONING	ROUTINE QA	RISK BEING MITIGATED	
ML replaces human taska: linear acceler- ator QA	Confirm function- ality with sample QA data (Ritter et al. 2018)	 Evaluate ML, sgahnt current clinic standards (Niein et al. 2009) Test imits of analytics such as by inserting errors into delivery tests or datasst for analysis, e.g., intentional leaf offset pres- ert in the masument result but missing in the delivery lile Document listations where the activance passes and fails Document situations where results differ by >5% 	 Fraguency: monthly analysis of a subset of the commission of a subset of the commissioning dataset (e.g., dynamic lead pap) includ- ing one at the limit Expect lident results unleas the software has changed, determine if a new baseline is needed Evaluate against a subset of the manual analysis for soft- ware update Review rends 	Confirm that the analysis is performed correctly to avoid the hazards of expectation bias	
fL supplemen- al to human asko: treat- sent planning	Continn functional standing with vendor-supplied treatment plans Define scope of ML for planning	 Evaluate behavior againti appropriate portines of original TFS commissioning results (if available) (Frazas et al. 1006) Are clinical goals me?1 is the agreement within 55% for key metrics, such as mean does to targets and make the source of targets and make the source of targets and make alter specific rollour of techniques for at least a limited number of body altes Evaluate permissions of differ- ent user types for applying ML sechniques (a, p. hybriant va- heaving the source), perform the same test casa—results whin 5%? Etable horosoftwords for quality control steps post-application of ML e.g. at Man di physicsitto 	 Repeat analysis of a subset of the commissioning dataset (e.g. dynamic leaf gap) includ- ing one at the limit. Monitor key docimentio results from ML techniques using Big Data Analytical tools where available by body rate: e.g. tar- get coverage and maximum available by body rate: e.g. tar- get coverage and maximum available by body rate: e.g. tar- get coverage and maximum of CARE (Mayo et al., 2017) Add extra scrutiny on key met- rics for the first 5 patients per body ate 	 Monitor for any uninten- ional chift in clinical prac- tice due to settings in the Maintain eval uation of plan against MD- provided goals (plan- ning objec- tives) (Evane et al. 2016) Marke et al. 2013) 	

		ontemporary QA consideratio plications	ns for the current state of ma	chine learnin
TYPE OF MACHINE LEARNING	PERFORMED BY	QA CONSIDERATIONS FOR	THE CURRENT STATE ROUTINE QA	RISK BEING
ML/AI en- hances human tasks: patient tasks: patient workflow, such as preparation for optimization	Confirm function- ality and under- stand the scope of what is automated	 Define if ML tools will be applied and implemented for all patients or by body site Create a commissioning data- set which includes manual preparation of the plan for optimization and automated preparation Continn reasonably concordant results between human and automated orealin of human with automated volumes to con- time expansion are correct a within \$\$ or co (tor optic and other small structures) 	 Repeat a subset of the commissioning dataset Confirm derivative structures auch as optimization attructures are consistent with those by humans (monthy) Confirm that quality control absps post-application remain in place, such as review of the final dose distribution by MD and physiciot 	 Riak being mitigated is an incorrec expansion from target OAR vol- ures to rea to overage o paparing, respectively Maintain ev uation of pi galanta Mg provided Maintain ev uation of pi rovierage o tation of pi rovierage o tation of pi against MG provided Maintain ev atta of the source of the source
ML additive: decision- making (El Naga et al. 2018a)	Evaluate with vendor-sup- plied dataset Define size of training and testing dataset	 Partner with physicians to determine shybridinass types and staging are appropriate for the algorithm. Asseas baseline variation in clinical practice among physi- clina within a practice, within a registry, or via publications Boses aesibility of the output of algorithms with staining sets across the spectrum of limited variability to significant Is the algorithm supporting implementation of a national practice standard? Is the algorithm being used to apply new science in a clinical 	 Conferm that the lingual and expected output nan constants with the intent of the practice Assace the frequency of patient type to determine how often the training dataset schedid be updated Monitor the relationship between decisions with pror practice using Big Data Analytical tools where available by body ate 	

El Naqa, Moran, Ten Haken, The Modern Technology of Radiation Oncology, V4, Van Dyke

continued next page

Oncogene

www.nature.com/onc

() Check for updates

REVIEW ARTICLE Translation of AI into oncology clinical practice

Issam El Naqa ¹², Aleksandra Karolak ¹, Yi Luo ¹, Les Folio², Ahmad A. Tarhini³, Dana Rollison⁴ and Katia Parodi⁵

© The Author(s), under exclusive licence to Springer Nature Limited 2023

Table 1. Key requirements and their brief description for AI clinical implementation.

Requirement	Description
Technical	Hardware and software platforms to train and deploy AI/ML algorithms
Data modeling	Input training data is key influencer of AI performance. Further annotated data is needed for validation and testing retrospectively and possibly prospectively.
Regulations	Use in cancer care requires regulatory approvals (e.g., 510(k) by the food and drug administration (FDA) in the USA).
Ethics	Al is prone to bias and its implementation should be checked against societal ethical standards
Governance	A legal framework needs to be developed to monitor and ensure continued safe AI implementation.

Take home Messages

- Artificial intelligence/machine learning offers new opportunities to develop better understanding of oncology and therapeutic response
- ML/DL algorithms vary in accuracy and interpretability levels and choice of proper algorithm(s) is an application and data dependent
- Proper development and deployment of AI/ML involves following guidelines (CLAMP) with possible prospective validation while adhering to ethical AI standards to achieve trustworthiness
- Explainable AI (xAI) is key for trustworthiness & clinical translation
- To overcome current barriers in AI/ML for healthcare emerging methods include visualization for interpretability (Grad-CAM), behavioral science (human-in-the loop), physics-based (quantum computing) techniques
- Collaboration between stakeholders (data scientists, biologists, physicists, economists, clinical practitioners, regulators & vendors) will allow for safe and beneficial application of AI in biomedicine, radiology and oncology

WILEY

CRC Pre